In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0.
The natural numbers are used for counting, and for labeling the result of a count, such as: "there are seven days in a week", in which case they are called cardinal numeral. They are also used to label places in an ordered series, such as: "the third day of the month", in which case they are called ordinal numeral. Natural numbers can also be used to label, like the jersey numbers of a sports team; in this case, they have no specific mathematical properties and are called .
Natural numbers can be compared by magnitude, with larger numbers coming after smaller ones in the list 1, 2, 3, .... Two basic arithmetical operations are defined on natural numbers: addition and multiplication. However, the inverse operations, subtraction and division, only sometimes give natural-number results: subtracting a larger natural number from a smaller one results in a negative number and dividing one natural number by another commonly leaves a remainder.
The most common used throughout mathematics – the , , , and – contain the natural numbers, and can be formally defined in terms of natural numbers. says: "The whole fantastic hierarchy of number systems is built up by purely set-theoretic means from a few simple assumptions about natural numbers.": "Numbers make up the foundation of mathematics."
Arithmetic is the study of the ways to perform basic operations on these number systems. Number theory is the study of the properties of these operations and their generalizations. Much of combinatorics involves counting mathematical objects, patterns and structures that are defined using natural numbers.
The phrase whole numbers is frequently used for the natural numbers that include 0, although it may also mean all integers, positive and negative. In primary education, counting numbers usually refer to the natural numbers starting at 1, though this definition can vary.
The set of all natural numbers is typically denoted or in blackboard bold as Whether 0 is included is often determined by the context but may also be specified by using or (the set of all integers) with a subscript or superscript. Examples include , or
The natural number 3 is the thing used for the particular cardinal number described above and for the cardinal number of any other collection of objects that could be paired off in the same way to one of these groups.
The natural number 3 then is the thing that comes after 2 and 1, and before 4, 5 and so on. The number 2 is the thing that comes after 1, and 1 is the first element in the sequence. Each number represents the relation that position bears to the rest of the infinite sequence.
The first major advance in abstraction was the use of numeral system to represent numbers. This allowed systems to be developed for recording large numbers. The ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1, 10, and all powers of 10 up to over 1 million. A stone carving from Karnak, dating back from around 1500 BCE and now at the Louvre in Paris, depicts 276 as 2 hundreds, 7 tens, and 6 ones; and similarly for the number 4,622. The had a place-value system based essentially on the numerals for 1 and 10, using base sixty, so that the symbol for sixty was the same as the symbol for one—its value being determined from context.
A much later advance was the development of the idea that can be considered as a number, with its own numeral. The use of a 0 numerical digit in place-value notation (within other numbers) dates back as early as 700 BCE by the Babylonians, who omitted such a digit when it would have been the last symbol in the number. The Olmec and Maya civilizations used 0 as a separate number as early as the , but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628 CE. However, 0 had been used as a number in the medieval computus (the calculation of the date of Easter), beginning with Dionysius Exiguus in 525 CE, without being denoted by a numeral. Standard Roman numerals do not have a symbol for 0; instead, nulla (or the genitive form nullae) from nullus, the Latin word for "none", was employed to denote a 0 value.
The first systematic study of numbers as is usually credited to the ancient Greece philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes even not as a number at all. Euclid, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2). However, in the definition of perfect number which comes shortly afterward, Euclid treats 1 as a number like any other. In definition VII.3 a "part" was defined as a number, but here 1 is considered to be a part, so that for example is a perfect number.
Independent studies on numbers also occurred at around the same time in India, China, and Mesoamerica.
Starting at 0 or 1 has long been a matter of definition. In 1727, Bernard Le Bovier de Fontenelle wrote that his notions of distance and element led to defining the natural numbers as including or excluding 0. In 1889, Giuseppe Peano used N for the positive integers and started at 1, but he later changed to using N0 and N1. Historically, most definitions have excluded 0, but many mathematicians such as George A. Wentworth, Bertrand Russell, Nicolas Bourbaki, Paul Halmos, Stephen Cole Kleene, and John Horton Conway have preferred to include 0. This approach gained wider adoption in the 1960s and was formalized in ISO 31-11 (1978), which defines natural numbers to include zero, a convention retained in the current ISO 80000-2 standard.
The constructivists saw a need to improve upon the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers, thus stating they were not really natural—but a consequence of definitions. Later, two classes of such formal definitions emerged, using set theory and Peano's axioms respectively. Later still, they were shown to be equivalent in most practical applications.
Set-theoretical definitions of natural numbers were initiated by Gottlob Frege. He initially defined a natural number as the class of all sets that are in one-to-one correspondence with a particular set. However, this definition turned out to lead to paradoxes, including Russell's paradox. To avoid such paradoxes, the formalism was modified so that a natural number is defined as a particular set, and any set that can be put into one-to-one correspondence with that set is said to have that number of elements.
In 1881, Charles Sanders Peirce provided the first axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of Dedekind's axioms in his book The principles of arithmetic presented by a new method (). This approach is now called Peano arithmetic. It is based on an axiomatization of the properties of : each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several weak systems of set theory. One such system is ZFC with the axiom of infinity replaced by its negation. Theorems that can be proved in ZFC but cannot be proved using the Peano Axioms include Goodstein's theorem.
The Peano axioms (named for Giuseppe Peano) do not explicitly define what the natural numbers are, but instead comprise a list of statements or Axiom that must be true of natural numbers, however they are defined. In contrast, set theory defines each natural number as a particular set, in which a set can be generally understood as a collection of distinct objects or elements. While the two approaches are different, they are consistent in that the natural number sets collectively satisfy the Peano axioms.
These are not the original axioms published by Peano, but are named in his honor. Some forms of the Peano axioms have 1 in place of 0. In ordinary arithmetic, the successor of is .
This produces an iterative definition of the natural numbers satisfying the Peano axioms, sometimes called von Neumann ordinals:
In this definition each natural number is equal to the set of all natural numbers less than it. Given a natural number , the sentence "a set has elements" can be formally defined as "there exists a bijection from to ." This formalizes the operation of counting the elements of . Also, if and only if is a subset of . In other words, the set inclusion defines the usual total order on the natural numbers. This order is a well-order.
Another construction sometimes called defines and and is now largely only of historical interest.
If 1 is defined as , then . That is, is simply the successor of .
If the natural numbers are taken as "excluding 0", and "starting at 1", the definitions of + and × are as above, except that they begin with and . Furthermore, has no identity element.
An important property of the natural numbers is that they are : every non-empty set of natural numbers has a least element. The rank among well-ordered sets is expressed by an ordinal number; for the natural numbers, this is denoted as (omega).
The number is called the quotient and is called the remainder of the division of by . The numbers and are uniquely determined by and . This Euclidean division is key to the several other properties (divisibility), algorithms (such as the Euclidean algorithm), and ideas in number theory.
The most common used throughout mathematics are extensions of the natural numbers, in the sense that each of them contains a subset which has the same arithmetical structure. These number systems can also be formally defined in terms of natural numbers (though they need not be). If the difference of every two natural numbers is considered to be a number, the result is the , which include zero and negative numbers. If the quotient of every two integers is considered to be a number, the result is the rational numbers, including . If every infinite decimal is considered to be a number, the result is the . If every solution of a polynomial equation is considered to be a number, the result is the .
Other generalizations of natural numbers are discussed in .
|
|